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On bubbles rising in line at large Reynolds numbers 

By J. F. HARPER 
Mathematics Department, Victoria University of Wellington, New Zealand 

(Received 24 February 1969 and in revised form 16 October 1969) 

Conditions for two gas bubbles in a liquid to rise steadily in a vertical line are 
derived theoretically with these assumptions: large Reynolds number, no surface 
contamination, spherical shape, negligible gas density and viscosity. Drag co- 
efficients are found, and are lower than for single bubbles. The bubbles have 
equilibrium distances apart, which are calculated to a first approximation. The 
equilibrium is shown to be stable to small vertical disturbances but unstable 
to horizontal ones. Similar results exist for lines of more than two bubbles, but 
are not calculated in detail. 

1. Introduction 

spherical, at a velocity U such that the Reynolds number 
In  certain liquids, a bubble of gas can rise steadily while remaining very nearly 

R = Udplp (1.1) 

is of the order of a few hundred. Here d is the bubble diameter, and p and ,u are 
the density and viscosity of the liquid. If the liquid is exceptionally pure, experi- 
mental results for the drag coefficient agree well with calculations from boundary- 
layer theory (Moore 1963), in which the density and viscosity of the gas in the 
bubble are neglected. 

This paper describes an extension of Moore’s theory to a number of spherical 
bubbles of the same size rising in a straight vertical line in an unbounded fluid. 
Lines of bubbles commonly appear in drinks containing carbon dioxide (e.g. beer), 
where particular points on the surface of the glass nucleate many bubbles in 
succession. They also occur in experiments where gas is blown through a tube 
whose end is fixed below the surface of a liquid. Regrettably, the theory is 
inapplicable to the first case, both because beverages contain surface-active 
solutes (consider the ‘head’ on a glass of beer), and because their bubbles usually 
grow larger while rising as they absorb more gas. Unless they are dissolving, 
bubbles must grow in any liquid, because the pressure on them decreases as they 
rise. However, this growth is slight if the gas is insoluble and distance travelled 
is very much smaller than the height of a barometer containing the liquid. For 
simplicity, we shall ignore the growth. AS a result, bubbles must approach a 
constant terminal velocity, and we can neglect variations with time of the flow 
relative to the bubbles. 

The calculation proceeds as follows. Assuming a first approximation to the 
flow pattern to be irrotational, as if the fluid were inviscid (see Moore 1963, 
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Batchelor 1967), we find the velocity distribution around a bubble in 52, and 
show that any two bubbles in the line are repelled by a force varying inversely 
as the fourth power of the distance between them, to a good approximation. 
In $ 3 we obtain the boundary-layer corrections to that velocity distribution, 
allowing for the fact that each bubble after the first in the line passes through 
fluid which has been in the boundary layers of the previous bubbles. This is 
done in the same way that Harper & Moore (1968) treated the circulatory flow 
inside a drop, where fluid entering the boundary layer has also passed through 
one before. (This part of the work is very much easier than Harper & Moore’s, 
because there is a simple solution in closed form for the velocity perturbations, 
and no difficulties occur at  the stagnation points because the viscosity of the 
gas is ignored.) The viscous drag on a bubble is obtained to order E-3, and turns 
out to decrease monotonically down the line. However, Harper & Moore’s 
method can only be used without modification if the line is much shorter than 
dR4, for diffusion of vorticity in the wakes between bubbles is not taken into 
account. The present theory therefore cannot give good numerical results for 
more than two bubbles, although the viscous drag must always decrease down 
the line. Distortion from a spherical shape also will not alter that property of 
the drag, because each bubble moves upwards through fluid which has been 
given an upward velocity by its predecessors. 

For a constant speed U ,  each bubble must have the same total drag coefficient. 
The configuration is stable to vertical displacements, because upward movement 
of any bubble relative to the others would not alter the viscous drag, but would 
increase the repulsion from bubbles above and decrease it from bubbles below, 
thereby forcing the displaced bubble downwards. Similarly, any downwards 
movement would be halted and reversed. The velocity U can be found as a 
function of diameter in the usual way, by setting the resultant force due to the 
fluid motion equal to the buoyancy force &nd3pg. AS this is the only part of the 
problem in which gravity appears if distortion from spherical shape is neglected, 
we can simplify the equations of motion by subtracting the hydrostatic term 
from the pressure, and using the modified pressure (Batchelor 1967). 

We show in $ 4  how the wake vorticity from the first bubble is amplified and 
distorted when the second is slightly out of line. A longitudinal trailing vortex 
system appears below the second bubble, revealing the existence of a lift force 
on it which pushes it even further out of line. The equilibrium position directly 
under the first bubble is therefore unstable in a pure liquid. 

Hawthorne & Martin (1 955) described vortices arising in a similar way around 
a hemisphere in a boundary layer, but they neglected viscous diffusion of vor- 
ticity near its surface. So did Lighthill (1956, 1957a, b) ,  who gave the inviscid 
theory in much greater detail than is needed here. Section 4 uses different 
variables and co-ordinates, chosen to simplify the calculations with viscosity 
included. 

It seems possible that in a liquid containing a surface-active solute the system 
may become stabilized, for the following reason: as the first bubble rises, ad- 
sorbed solute is carried around on its surface from front (top) to rear (bottom), 
and so the front of the bubble has a lower concentration of solute and hence 
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higher surface tension than the rear. (This slows down the motion; see Levich 
1962.) The fluid near the rear stagnation point, with its low surface tension, is 
then carried down the middle of the wake, and is surrounded by fluid with higher 
values of surface tension. If the eecond bubble is now slightly displaced from a 
central position, say to the left, the surface tension will be higher on its left side 
than its right, and there will be a rightwards force on it tending to pull it back. 
The calculation is involved, however, and will be described elsewhere. 

FIGURE 1. Two bubbles rising in the same line, with 8 = 0.4. The image dipoles shown a t  
0, A, B give the velocity around S, to order Us5. One streamline of the flow relative to the 
bubbles is shown, but not where it would pass very close to their surfaces. 

2. The irrotational first approximation to the flow 
We begin by considering two spherical bubbles only, and then extend the 

result to a greater number. Let the two bubbles, S, and 8, in figure 1, whose 
centres are at 0 and A ,  be at rest in a stream with steady uniform velocity U 

48 F L M  41 
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at infinity in the direction OA. Define a separation parameter s (which is assumed - 

a small) by the equation 
s = -  

OA 7 

where a is the radius of either sphere. We use right-handed spherical polar 
co-ordinate systems (r,, 0,, x,) centred on the nth bubble from the upstream 
end, with On = 0 pointing upstream, and xn the azimuthal angle increasing anti- 
clockwise as seen from above. 

If the flow past the spheres is taken to be irrotational, it can be found by 
superposing the uniform stream U and a set of image doublets (Basset 1961). 
The resultant velocity ijo at P is in the direction PIT and given by 

(le = $U sin O , ( l -  s3 + 5s4 cos O1 + 9s5(7 + 35 cos2 0,) + O(s6)). (2.2) 

The region of low velocities, and hence high modified pressures, is therefore 
larger between the spheres at  D than on the far side of A a t  C. If the resulting 
force on S, in the direction A 0  is F,, the force coefficient 

Equation (2.3) is most easily derived from Basset’s (1961) formulae for the 
kinetic energy, and Lagrange’a equations. They also show that if A 0  is not quite 
parallel to the velocities of the spheres (assumed equal to each other), the force 
is still in the direction A 0  and still given by (2.3). This fact is used in $ 4  below. 
The sphere S, is thus repelled from S, by a force varying as s4 for small s. Either 
symmetry or Newton’s third law with d’illembert’s ‘paradox’ shows that S,  
repels S,  with an equal and opposite force. If more than two spheres are moving 
with equal speeds in a straight line, it is easy to see by superposing velocities in 
(2.2) that the repulsion between each pair is given by (2.3) and that the error in 
the resultant force on any sphere is at  most O(si), where s, is the value of s for 
its nearest neighbour. 

3. The boundary layers 
Denote the nth bubble in the line by S,, starting at  the upstream end. We 

ignore the terms which are O(s3) in (2.2)’ and let the 0, component of velocity 
in the boundary layer be ?je + Pen, where 

qen = UR-* f (2, z )  cosec On, 

x = n-1+~(2-3cos8,+~0~30,) ,  

3R4(r,-a)sin28, 
8a 

z =  , (3.3) 

and n-  1 < x < n on the nth bubble. 

f (x, z )  obeys the diffusion equation 
The argument of Harper & Moore (1968) adapted to  this notation shows that 

a y a z z  = qaflaz), (3.4) 
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in n- 1 < x < n, 0 < z < 00, in the limit as R -+ 00, with initial condition 

f(0, 2) = 0, (3.5) 

continuity condition between the rear of one bubble and the front of the next 

lim f ( x ,  z )  = lim f ( x ,  z ) ,  
x--tn- X - - t n f  

(3.6) 

and bubble surface condition 

afl& = 8 at  x = 0, (3.7) 

provided that the action of viscosity in the wake between bubbles can be ignored, 
i.e. provided that the whole line of bubbles is short compared with a length uRt 
(see Moore 1963). 

The solution for f(x, x )  is then obtained, as in Carslaw & Jaeger (1959, $2.5), as 

for all x > 0. In  each bubble the diffusion off(x, z )  therefore appears to continue 
just where it left off in the one before. Such a simple situation could not occur 
with drops, where the internal viscosity forces some redistribution of the func- 
tion f (x, x )  in the front stagnation region. 

The viscous drag coefficients C, may now be found by the method of Moore 
(1963) to be given by 

3 -  
8 0  

RB(RCD-48) = K,  = -! { f ( n , z ) 2 - f ( n - 1 ) 2 } d z +  

1 

-1 
= S(42 - 1) d { n Q  - (n - l)%}- 22/ (2 /7~)  (an - 2 - 3,u +p3)4d,u 

+ O(R-*) + O(R-4 s-l), (3.9) 

where p = cos0,. Hence K ,  = -2.211, K ,  = -4.345, K ,  > K,,,. Apart from 
the notation, (3.9) differs from Moore’s result only in the first integral, which 
derives from viscous dissipation in the far wake, and in an additional term in the 
error, from viscous diffusion of (vorticitylr, sin 0,) between bubbles. To obtain 
(3.9), consider first an isolated bubble (n = 1). The right-hand side reduces to 
Moore’s value of 2.211, to four figures. Bringing in a second bubble alters the 
velocity field around the first only by O(s3) of itself, and hence alters the viscous 
drag on it by O(B-L3), which we neglect. Equation (3.9) for n = 2 now follows 
because the total viscous dissipation in the flow field must, in steady motion, 
be equal to the sum of the powers of the drag forces on the two bubbles. Similarly, 
a third bubble changes the drag forces on the first two only by negligibly small 
amounts, and the viscous force on it must be the difference between the total 
drag forces for two and three bubbles, and so on. The term O(R-*S-~) in the 
drag equation (3.9) follows from Moore’s theory of the wake, applied to the part 
of it between bubbles. 

48-2 
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4. Lateral stability 
A line of bubbles will remain vertical only if it is stable to small lateral dis- 

turbances. We show that if the second bubble S, is given a horizontal displace- 
ment eu, the horizontal force on it tends to increase e, a t  least in the limit E + 0, 
when higher powers than the first can be neglected. We take 8 < R-9, so that the 
fluid from the wake of S, washes over the whole surface of S,. 

Although the motion is no longer axially symmetric, the irrotational flow still 
is, and so is the boundary layer around S,, with error O(es4), which we neglect. 
We may therefore use (3.8) to write f = - 8 ierfcx, in the rear stagnation region 

~ 

of S,, where we rename x as z,, and 
is given by - 

$1 = 

$1 

In the wake between the bubbles 
- 

where the irrotational stream function $, 

4 Ua2R-*z,. (4.1) 

where m, denotes distance from the vertical line x2 = 0, 0, = 0 or n, through the 
centre of S,. With m, similarly defined from the line x1 = 7 ~ ,  8, = 0 or n, and 3, 
the inviscid stream function vanishing on S,, we have F, = +Urn: in the wake 
between the bubbles, and to order E 

mX = m2,-2m2~acosx,, eusinx, = rn,sin(x,-~~).  (4.3) 

In cylindrical polar co-ordinates (ml, h, x,) the vorticity components in the wake 
of S, are (0, 0, m,B($,)), where I?($,) = B(4Ua2R4z1) = 3U erfc (z l ) /a2,  and h 
measures distance vertically downwards. In  co-ordinates (m,, h, x,) the vorticity 
vector is therefore 

( - m1W1) sin (x1- X 2 ) )  0, m,B($d cos (x1- x2) )  

= (-€asinX,B(T,),O,&(F,)), (4.4) 

where Q($) = (2$/U)*B($), if we make use of (4.2) and (4.3). 
Developments in the front stagnation region of the second bubble S, are 

best described in Boussinesq’s orthogonal co-ordinate system ($, $, x), where 
9 and q5 are the stream function and velocity potential for the irrotational flow 
past S, in the absence of S,, and x = x2. In the wake between S, and S, and not 
close to either, this co-ordinate system is very nearly the same as the cylindrical 
polar one (m,, h, x,), and (4.4) gives the vorticity components to a degree of 
accuracy sufficient for what follows. In  the front stagnation region of S,  the 
flow is an effectively inviscid small perturbation of that described by $ and $. 
We may therefore use Helmholtz’s theorem that vorticity is convected like line 
elements of fluid, and obtain, correct to order e, 

Q~ = m,Vo+ = -eUasinxQ($), 

Q, = v w +  = -eUusinXQ(y?) 

(4.5) 

(4.6) 
1 
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where e$+ is the $$ rate-of-strain component in the actual flow, V is the speed 
of the irrotational flow ($, $), and the integration in (4.6) is carried out along a 
streamline of that flow, i.e. $ = const., x = const. The term B($) in (4.7) gives 
the starting value for the axially symmetric part of the motion, which was de- 
scribedin $3. The remaining termsin ( 4 4 ,  (4.6) and (4.7) are all proportional to E ,  

and to begin the boundary-layer analysis we need only find the value of the 
integral in (4.6) right through the stagnation region. This turns out to come 
principally from the irrotational flow and to be given by 

region 

corrections induced by the vorticity being O(R-*) smaller (Moore 1963). 
Equations (4.5) to (4.8) can now be used to obtain the starting values of 

vorticity components, or more conveniently the Q’s, in the second bubble’s 
boundary layer. The vorticity equations now include viscous terms, and it is 
elementary but time-consuming to show that Q+, Clzg and Qx all obey the same 
one-dimensional diffusion equation (3.4) as f(x, z) .  The boundary conditions to be 
applied at  the surface are that tangential shear and normal velocity components 
vanish, and after a little reduction 

a 
Q + = Q x = - ( Q  ) = O .  az + (4.9) 

Calculation of the Q,’s in the boundary layer now proceeds in the usual way 
(Carslaw & Jaeger 1959, 92.2). We require the lift coefficient C, on the bubble, 
which is most easily found by following the variation of the vorticity through the 
rear stagnation region to the wake and working out the total line doublet strength 
of the trailing vortices (Batchelor 1967, p. 377). Thus, to order E, 

C, = €R-i(I1 + I,) + O(es5) + o(~R-5) + O(€s4R-3), 

where 

and after numerical integrations 

C, = 14.4~R-4 + O(as5) + O(eR-8) + O(6s4R-J), (4.10) 

where the three error terms come respectively from pressure forces (92), viscous 
corrections to e+$ and asymmetry corrections to e++. The lack of axial symmetry 
also leads to extra terms in equations (4.5) to (4.7), but these have still smaller 
effects on (4.10). 

The lift force is in a direction tending to increase e, and so in a pure liquid a 
vertical line of two bubbles is unstable. Clearly the same would hold for more 
bubbles: with the first n bubbles in line and the (n+ 1)th out a distance m, the 
factors erfc (2’) in Il and I, would be replaced by erfc (z‘ /n*) on the theory of 93, 
or some more complicated positive function of z’ on taking diffusion of vorticity 
between bubbles into account, but Il and I, would both remain positive. 
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